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In  this paper, an attempt has been made to model the dynamics of ciliary pro- 
pulsion through the concept of an ‘envelope’ covering the ends of the numerous 
cilia of the microscopic organism. This approximation may be made in the case 
when the cilia are close together, as can occur in the case of the symplectic 
metachronal wave (i.e. the wave travels in the same direction as the effective 
beat). For simplicity, a spherical model has been chosen, and the analysis which 
follows is a correction to Lighthill’s (1952) paper on squirming motions of a 
nearly spherical organism. The velocity and efficiency compared to the work 
done in pushing an inert organism are obtained, and compared to that of a 
ciliated organism. 

1. Introduction 
The ‘mechanics of ciliary propulsion’ has barely been touched upon from the 

mathematical point of view, and only passing comment that an approach would 
be desirable has been made. Gray (1928) in his book said, “little is known of the 
forces which surround very small elongated structures when they are moving 
through water at very low speeds”. Although numerous calculations have been 
made for the case of the single flagellum, little material has appeared for the 
case of high concentrations of cilia on the surface of a flat or elongated organism, 
so even today Gray’s comments remain remarkably true. Similar comments 
to this were also made by Lighthill (1969). 

In  1675, the Dutch microscopist Leeuwenhoek was perhaps the f i s t  person 
to view and record the movements of cilia. In  a letter to the Royal Society, he 
described the incredibly thin feet or little legs by which a small animal can 
propel itself through water. Muller, in 1876, appears to have been the first person 
to use the name ‘cilia’. 

The following analysis is only concerned with the hydrodynamical interac- 
tions and nothing is said about the neuroid and/or electrical co-ordination of the 
ciliated organism. The main advantages of ciliation is that the body may perform 
work on the fluid without undergoing drastic changes in shape which in turn 
require impractical amounts of straining of its tissue. Ciliary propulsion is suited 
to small organisms which are either elongated or flat, so that the ‘rowing type’ 
beat will be more effective in these situations. 

In  this paper, the mechanics of this method of propulsion are studied with a 
mathematical model involving an ‘envelope ’ (i.e. an instantaneous surface 
covering the ends of the numerous undulating cilia, see figure 1) over the surface 
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of the organism. Thus we are replacing the individuality of the cilia by a pro- 
gressive waving envelope. The no-slip condition is applied at the surface of the 
waving envelope. This approach is perhaps valid for the case of the symplectic 
metachronal wave (i.e. when the direction of beat and wave transmission are in 
the same direction). In  this case, any cilium is in phase in a transverse line, but 
at  different stages of the beat in the longitudinal direction, so that an axisym- 
metric flow about a symmetric organism may be considered. 

FIGURE l ( a ) .  The arrow represents the direction of metachronal wave. - - - -  , the in- 
stantaneous surface over the organism ; . - - -. - , the surface Y = a in analysis; -- , the 
actual surface of the organism. The upper hemisphere has only been included as the flow 
is axisymmetric. 

Wave- 

FIGURE 1 (b) .  - - - -, envelope over metachronal wave of Opalim~; +, direction of 
metachronal wave (Sleigh 1962). 

Bcat - 

FIGURE 1 (c ) .  View from above of Opalilza to show symplectic 
metachronal wave patterns (Sleigh 1962). 

In order to make it possible to calculate the mechanical properties of the model 
in reasonably simple terms, it has proved convenient to take the organism to 
be spherical. One organism that has been studied in detail and exhibits symplectic 
metachronism is Opalina (Sleigh 1962), which is an oval-shaped flat-disk organism. 
Figures 1 (b )  and ( c )  show the metachronism of Opulinu viewed from the side and 
above respectively. Considering the problem of a sphere is highly idealizing the 
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shape of the organism, but at low Reynolds number the shape does not alter the 
hydrodynamical features very greatly. When the cilia are densely packed the 
shape will affect the metachronism, as we would expect them to co-ordinate 
more easily in a flattened or elongated position. Another reason for the flat or 
elongated shape is that the surface area to volume ratio is high, which in turn 
implies alargenumber of cilia to propel the organism (e.g. Opalinu). An alternative 
model of a relatively tractable kind is an infinite waving plate such as Taylor 
(1951) studied, but uncertainty about how far the finiteness of the body shape 
may influence the mechanics induced the author to investigate the simplest body 
of finite extent, namely the sphere. In  any case, the biological world provides 
much variety so the following problem may closely model some organism ! 

2. Equations of motion 
The analysis in this section will closely follow that of Lighthill's (1952) paper 

on squirming motions of spherical organisms. This paper, however, will include 
corrections to his work, which result from the omission of two series terms in 
his solutions for the velocities. The mean shape of the organism is taken as a 
sphere of radius a. Incompressible axisymmetric flow around the sphere will 
be considered, so that equations of motion for the velocity q and pressure p 
at low Reynolds number are 

v.q = 0, vp = pvzq, ( 1 )  

where ,u is the viscosit'y. In  spherical polar co-ordinates the solution in terms 
of radial and azimuthal velocities u and v is, 

a2 a3 
u = -UcosO,+Ao,Po+~(Al+Bl) l ,P l  r 

a3 
r3 

v = UsinOo++(Al+Bl)-P' 

V,  is defined as 
2 - 2  

n(n + 1) n(n+ 1) 
v,=- sinOoP~(cos 0,) = -----Ph(cos Oo) ,  

P', being an associated Legendre function of the first kind. In  the solution for 
u and v we have taken an origin moving relative to the fluid with velocity 

u = 3(2B,-A,) (6) 
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as is necessary so that the motion has finite total energy; this condition also 
requires us to omit the Stokeslet term in the solution for the velocities. This 
solution can also be derived from the stream-function equation (see Happel & 
Brenner 1965, (4.23)). In  the above solutions for u. and ((2) and (3) respectively), 
the last term in each was absent from Lighthill's solution. 

From the equations of motion (1) the pressure 

can be obtained. 
The radial and tangential stresses exerted on the fluid by the cilia are given by, 

uTT = p - 2p a$%, 

which can be obtained by substitution from ( Z ) ,  (3) and (7). The rate of working P 
on the surface of the sphere is obtained by the integral 

and the hydrodynamical efficiency may be found by taking the well-known 
Stokes formula for drag of a sphere, multiplying by the mean velocity and 
dividing by the mean rate of working, 

- -  
?,I = 6npaU2/P. (10) 

3. Surface conditions 
In  the previous section the problem for a sphere with given velocity components 

a t  the surface was solved. We now apply this solution to the problem of the 
waving motion of a deformable spherical envelope. 

As a cilium obviously has both normal and tangential movements, we define 
the surface of the envelope by considering an oscillating surface on a sphere in 
the form 

where e is suitably small of 

are order 1 in (0, 77). We have taken a finite valued N to ensure convergence on 
expansion in a Taylor series about (a,  Oo). Thus we have a small perturbationto 
the sphere r = a and a,(t) and /?,(t) are oscillatory functions of time. Here, a,, 
is taken identically equal to  zero as this represents surface swellings of the 
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organism (source-like), while a1 = 0 since this mode represents oscillations 
about the centroid of the organism. It should also be pointed out that another 
necessary condition is that d0/d0, > 0, which allows a one-to-one relation 
between 8 and 0,. 

We envisage being able to get each labelled co-ordinate (a, 0,) (a Lagrangian 
type of formulation for the envelope) to trace out the path of a tip of a cilium. 
Sleigh (1968) has obtained numerous data on the movement of cilia on cin6 
films taken a t  60-400 frameslsec. The movement of their tips may be matched 
onto the above problem and thus velocities of propulsion can be compared to 
experimental results. The velocities in the radial and azimuthal directions a t  the 
envelope surface due t o  the no slip condition are, 

N \ 

If we expand q(R, 8 )  in a Taylor series expansion about (a,  0,) and if an and 
pn are proportional to either cos at or sin at, we obtain a first-order harmonic 
term in time, a ‘d.c.’ second-order term and other second-order and higher 
harmonic terms. 

q(R, 8) = s (a ,  8,) + (R - a )  (WW,=, 
+(0-0,) (aq/a0,),=,+higher order terms. (13) 

The surface coefficients An(t) and B,(t) are attained from the q(a, 0,) term on 
the right-hand side of (13). From (13) the first-order approximation can be 
obtained, 

For all other n, A:) = 23:) = 0. This first approximation can be substituted into 
all the previous equations in Q 2. It is noted that if we take the mean with respect 
to time, the net stresses and velocity of propulsion are identically equal to zero 
because they are linear in ctn and 1, (i.e. to the first approximation there is no 
motion). This is not unexpected as in results for swimming sheets (Taylor 1951) 
it is necessary to go to the second approximation to obtain propulsion. 

If we substitute the first-order approximation into the derivatives of q on the 
right-hand side of (13) we can then find the second-order effects in q(a, O,), i.e. t o  
the second approximation, 

A ,  = A(1) = ae&,; B, = BE) = ae l ,  (12 = 1,2, ..., N ) .  
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Therefore the second approximations for A, and B, are, 

A:) = Q(2n + 1) u(a, 0,) P,(cos 0,) sin 0, dB,, 

B',2) = &n(n+l)(Bn+l) u(a.,8,)~sin#,d0,, 
/o* 

/o= 

s," 
or on integrating by parts, 

BE) = g(2n+ 1) (dv/d8,,+cot8,v) Pnsin8,d8,. (17) 

From this it is noticed that, 

A t )  = A:) +- O ( ~ 2 f , ) ,  B',2) = Bg) + O(e2f2),  

where f, and f 2  are functions of a,, &,, p,, B, and N .  Lighthill evaluated both 
Ai2) and Bi2) to obtain the velocity of propulsion, which in corrected form is as 
follows, 

u = a &!IP1- €2 &a,B1+ g&2p1 [ *  
N - l  (zn+4)an~n+,-z.ndnP,+,- (6n+4)an+,Bn- (2%+4)&,+1P, 

(2n+ 1)  (2n+ 3) - c  
n= 2 

For evaluation of A:) (n > 1) the integral of P,qP,, and P,vdPm/dO and for 
BE) (n > l), V,qP, and V,(dq/dB)  V, must be considered. To do this the formulae 
derived by Gaunt (1929) may be of some use, but the algebraic manipulation 
is very complicated, so no attempt will be made to continuefurther in this 
direction. 

4. Metachronal wave 
When cilia occur all over the body it is necessary that they should be organized 

to beat in some regular manner. This is called the metachronal wave and appears 
as a wave passing over the surface of the organism. Sleigh (1968) and Holwill & 
Sleigh (1969) have analyzed the movements of various types of cilia, and have 
also used a model to derive the work done by a single cilium (Subellaria). 

Theoretically it is possible to model the metachronal wave by a travelling 
wave over the surface of the form cos (ka8 - ut) and sin (ka0 - ut), but they both 
possess infinite series expansions in terms of P, and V,, so the possibiliky of 
predicting velocities and efficiencies would be extremely limited, as we then 
obtain an infinite number of terms in the series solution for velocity and rake of 
working. However, we can approximately model the metachronal wave by con- 
sidering modes a,, a,+,, ,8, and Pn+,, remembering that P,, Pn+,, V ,  and V,+, 
are oscillating functions on the interval (0,n) and that P, and P,+l (and also 
V, and V,,,) are about a quarter wavelength out of phase over most of the interior 
of the interval 8, = 0 to n (a necessity for a progressive wave). From the solution 
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for the velocity (18) we gain the erroneous impression that the propulsion for 
large n is dominated by the anan+lmodes, but this is only a product of the analysis. 
As we would expect, there is an equal contribution from all four series: as 
(Xct,P,l and IX/?,V,I are O( l ) ,  we observe that I/?,\ may be much larger than 
la,], due to  the definition of V,  which is small in the interval ( 0 , ~ )  for large n, 
whereas lP,J is 1 at 8 = 0 and T. If we used the orthonormalized multiples of 
P, and V,, we would in fact see that each series can contribute an equal amount 
to the velocity of propulsion, for equivalent magnitude of a: and p:, where 
a, = (&(2n+l))ha: and/?, = (+n(n+l)(Bn+l))*/?:. 

Let the surface of the organism, to represent the metachronal wave, be given 

by Y 

1 (19) 
R = a[ l  + ~ { C O S  d(aN-,PN-, + aNPN) +sin at(aN-,PA,-, + aN-lPN-l)}], 

8 = 80+~{cos~t(bN-zVNTN--2+ b,V,)+sind(bN-,YN-,+ blv-l%-l)}. 

With this definition, we include two special cases; (i) aN-, = a, = bNP3 = b ,  = 0; 
(ii) R = a a t  8 = 0, n; all t. The distinction between the two is that in (i) the 
maximum radial amplitudes occur at/around the ends 8 = 0 and T, whereas 
in (ii) they occur in the mid-section of the spherical organism. This second case 
is physically more reasonable (and mathematically also, because of the singular 
nature of the Legendre functions a t  8 = 0 and n) that the maximum amplitudes 
should be near the ‘middle’ of the organism. 

For this model of the wave, the mean with respect to time of the velocity (1 8) 
becomes ( N  > 5); 

x {2(n+ 1)a,b,+l+2~a,+lb,+4b,b,+l- (n’-n-+)a,a,,,)]. (20) 

From (20) it is obvious that we need a careful choice of a, and b, to obtain the 
maximum velocity, especially if we are also applying constraint (ii) above. I n  
(20) we have twelve terms contributing to the velocity, so for maximum velocity 
we need the dominant terms to have the same sign. In tables 1 and 2 we note the 
effect on the velocity of propulsion and efficiency of changing the sign of b, with 
respect to a,, as the rate of working is less for modes with the same magnitude 
but different sign (see (9)). 

5. Calculations 
In the calculations we have taken two examples a t  N = 17 and N = 2 2 ,  to 

show the shape of the organism. For this case we have taken u = 25sec-1 and 
a = 100pm as this is indicative of the angular frequency of movement of the 
cilium and length of the organism concerned respectively. (Opalina is 200- 
300pm long, wave velocity 100-400pm/sec, cilium length 10-15pm, beat 
frequency 1-4 per see, velocity of propulsion 100-200pm/sec.) For conversion 
from these dimensional units we, however, note from (20) that is proportional 
to a u  to this order of calculation for the velocity, 
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aN-2 aN 

1.1 1.4 0 
1.2 4 - 4  
1.3 4 - 4  
1.4 3.8 -4  
1.5 3.9 - 4  
1.6 0 0 
1.7 3.9 - 4  

TABLE 1. 

aN-3 

0 
4 
4 

- 3.8 
- 3.8 

0 
3.8 

aN-l  

1.4 
-4  
- 4  

3.9 
3.9 
0 

- 3.9 

bN-2 

10 
- 15 
- 10 
- 15.3 

0 
- 15.3 

15.3 

b N  
0 

15 
10 
20.5 
0 

20.5 
- 20.5 

'N-3 

0 
- 15 
- 10 

14.3 
0 

14.3 
14.3 

bN-l  

10 
15 
10 

- 18.8 
0 

- 18.8 
- 18.8 

Velocity (pmlsec) and efficiency for N = 17. E = 

U(ium1 
5 4  r(O//o) 

5.2 0.1 
99.1 2.8 
89.2 2.4 

-95.2 2.4 
-55 .5  1.2 

21.4 0.8 
-27.2 0.4 

0.05 

I 
I Propulsion - 
1 " 

I 
I Propulsion - 
1 " 

Wave - 

Propulsion- 

(h) 

FIGURE 2. The hemispherical surface of organism for (a) N = 17 and (b) N = 22. The 
coefficients in (19) are given in tables 1.1 and 2.1 for these surfaces. (- - -) is t = 
later than (-). 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 

a N - 2  

1.4 
2 
4 

- 4.5 
- 4.5 
- 4.5 

0 
2.3 
2.3 

a N  

0 
0 

-4  
4.5 
4.5 
4.5 
0 

- 2.3 
- 2.3 

aN-3 

0 
0 
4 

- 4.4 
4.4 
4.4 
0 
2.2 

- 2.2 

aN-1  

1.4 
2 

-4  
4.4 

- 4.4 
- 4.4 

0 
- 2.2 

2.2 

bN-2 

10 
- 5  
- 10 

9.3 
- 9.3 

0 
- 9.3 
- 9.3 
- 9.3 

b N  

0 
0 

10 
- 11.7 

11.7 
0 

11.7 
11.7 
11.7 

bN-3 'N-1 

0 10 
0 -5  

- 10 10 
8.6 -11 
8.6 -11 
0 0 
8.6 -11 
8.6 -11 
8.6 -11 

U ( P l  
see) ?(%I 

2.8 0.03 
-7.9 0.2 
87.3 2.2 

104.8 2.6 
-40.7 0.4 
-77.1 1.4 

4.3 0.1 
20.0 0.3 

-31.6 0.8 

TABLE 2. Velocity (pmlsec) and efficiency for N = 22. E = 0.05 
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FIGURE 3. Hemispherical surface of organism at N = 17, with coefficients given in table 1.7. 
(- - -) is . t = $T later than (-). 

-Wave 

FIGURE 4. Hemispherical surface at  N = 22, with coefficients given in tablo 2.4. (- - -) is 
t = 4T later than (-). 

The velocities and efficiencies are shown in tables 1 and 2, having chosen 
e = 0.05 in both cases. The a, and b, are taken such that the series are of order 1. 
We may take the a, to be O(n4) and the b, to be O(n%), provided the restriction 
d6jd6, > 0 is not violated. The velocity of the organism can have both positive 
and negative sign, this being due to either of two things: (i) the direction in which 
the wave is progressing or (ii) the effect of longitudinal and transverse oscillations 
tending to propel the sphere in opposite directions. This second case (ii) corre- 
sponds with the observations of Tuck (1968) that longitudinal and transverse 
oscillations tend to propel an infinite sheet in opposite directions, so that on 
combination we may have either a positive or negative velocity. Large velocities 
occur, relatively speaking, when each b,  has opposite sign to the corresponding 
a,. These larger velocities of the order of 100pm/sec are comparable with those 
observed for Opalina. The efficiency allows us to compare the work done in the 
ciliary movements to the workdone by an external force pushing an inert organism 
at the same velocity, and as well enables us to compare the efficiency of various 
modes. In  conclusion, this model for ciliary propulsion of a sphere compares 
favourably to the velocities experienced in nature and is therefore a quite 
amenable approach to the problem. 

This work wa,s carried out while the author was in receipt of a George Murray 
Scholarship from the University of Adelaide, and a studentship from C.S.I.R.O. 
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of Australia. The research was carried out at the Department of Applied 
Mathematics and Theoretical Physics, University of Cambridge. Comments and 
suggestions from Professor M. J. Lighthill and filmplates and data from Dr M. A. 
Sleigh are gratefully acknowledged. 
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